A Toxoplasma gondii leucine-rich repeat protein binds phosphatase type 1 protein and negatively regulates its activity.
نویسندگان
چکیده
We have characterized the Toxoplasma gondii protein phosphatase type 1 (TgPP1) and a potential regulatory binding protein belonging to the leucine-rich repeat protein family, designated TgLRR1. TgLRR1 is capable of binding to TgPP1 to inhibit its activity and to override a G(2)/M cell cycle checkpoint in Xenopus oocytes. In the parasite, TgLRR1 mRNA and protein are both highly expressed in the rapidly replicating and virulent tachyzoites, while only low levels are detected in the slowly dividing and quiescent bradyzoites. TgPP1 mRNA and protein levels are equally abundant in tachyzoites and bradyzoites. Affinity pull down and immunoprecipitation experiments reveal that the TgLRR1-TgPP1 interaction takes place in the nuclear subcompartment of tachyzoites. These results are consistent with those of localization studies using both indirect immunofluorescence with specific polyclonal antibody and transient transfection of T. gondii vector expressing TgLRR1 and TgPP1. The inability to obtain stable transgenic tachyzoites suggested that overexpression of TgLRR1 and TgPP1 may impair the parasite's growth. Together with the activation of Xenopus oocyte meiosis reinitiation, these data indicate that TgLRR1 protein could play a role in the regulation of the T. gondii cell cycle through the modulation of phosphatase activity.
منابع مشابه
Diacylglycerol kinase δ modulates Akt phosphorylation through pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2).
Discovering proteins that modulate Akt signaling has become a critical task, given the oncogenic role of Akt in a wide variety of cancers. We have discovered a novel diacylglycerol signaling pathway that promotes dephosphorylation of Akt. This pathway is regulated by diacylglycerol kinase δ (DGKδ). In DGKδ-deficient cells, we found reduced Akt phosphorylation downstream of three receptor tyrosi...
متن کاملPeptides derived from Plasmodium falciparum leucine-rich repeat 1 bind to serine/threonine phosphatase type 1 and inhibit parasite growth in vitro
1center for Infection and Immunity of Lille, U1019 – UMR 8204, Institut Pasteur de Lille, Université de Lille, Lille cedex, 2cIMI Paris, UPMc/ Inserm U1135, Paris, France Introduction The biogenesis of protein phosphatase 1 (PP1) holoenzyme in eukaryotes requires diverse regulatory subunit proteins (RSPs) that bind to the highly conserved PP1 catalytic subunit (PP1c) and direct its spatiotempor...
متن کاملSENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis.
Reversible protein phosphorylation mediated by protein kinases and phosphatases plays an important role in the regulation of leaf senescence. We previously reported that the leucine-rich repeat receptor-like kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (AtSARK) positively regulates leaf senescence in Arabidopsis (Arabidopsis thaliana). Here, we report the involvement of a protein serine/th...
متن کاملDual Role for Inflammasome Sensors NLRP1 and NLRP3 in Murine Resistance to Toxoplasma gondii
UNLABELLED Induction of immunity that limits Toxoplasma gondii infection in mice is critically dependent on the activation of the innate immune response. In this study, we investigated the role of cytoplasmic nucleotide-binding domain and leucine-rich repeat containing a pyrin domain (NLRP) inflammasome sensors during acute toxoplasmosis in mice. We show that in vitro Toxoplasma infection of mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2007